

BK BIRLA CENTRE FOR EDUCATION

SARALA BIRLA GROUP OF SCHOOLS SENIOR SECONDARY CO-ED DAY CUM BOYS' RESIDENTIAL SCHOOL

Pre-MidTerm-Test 2024-25

CHEMISTRY (043)

Class : XII Date : 31 /7/2024 Admission No.:

General Instructions:

- (i) There are 13 questions in all. All questions are compulsory.
- (ii) This question paper has three sections: Section A, Section B and Section C.
- (iii) All the sections are compulsory.
- (iv) Section A contains five questions of 1 mark each, out of which one question is assertion and reasoning type question.

(v) Section B contains four questions of two marks each, Section C contains four questions of three marks each.

(vi) There is no overall choice. Use of calculators is not allowed.

SECTION-A

1.	Which of the (a) Mg ²⁺	following ha (b) Ti ³⁺	s the maxim (c) V ³⁺	um nun (d) Fe ²	iber of unpaired electrons? +	1
2	. The property (a) variable o (c) formation	v which is no exidation state of coloured	t characteris es. compounds	stic of tra	nsition metals is (b) tendency to form complexes. (d) natural radioactivity.	1
3.	Primary and s (a) 4, 4 (k	econdary va o) 0, 6 (c) 6	lency of Pt in 5, 4 (d)	n [Pt(en) 0, 4	₂ Cl ₂] are	1
4.	The complex i (a) Ionization (c) Co-ordina	ions [Co(NH ₃ isomers ation isomer)₅(NO₂)] ²⁺ aı s	nd [Co(N (b) (c	H₃)₅ (ONO)] ²⁺ are called Linkage isomers I) Geometrical isomers	1

5. These questions consist of two statements, each printed as Assertion and Reason. While answering these questions, you are required to choose any one of the following four responses. 1

(a) Both Assertion and reason are true and reason is correct explanation of assertion.

- (b) Assertion and reason both are true but reason is not the correct explanation of assertion.
- (c) Assertion is true, reason is false.
- (d) Assertion is false, reason is true.

Statement: Lanthanide contraction is more than actinoid contraction.

Reason: Actinoids have 5f orbitals being filled which are more dispersed in space compare to 4f orbitals.

Duration: 1 Hr Max. Marks: 25 Roll No.:

SECTION – B

 6. (i) Silver atom has completely filled <i>d</i> orbitals (4<i>d</i>¹⁰) in its ground state. How can you say that it is a transition element? (ii) Why do the transition elements exhibit higher enthalpies of atomisation? 	2
 7. (i) In the series Sc (Z = 21) to Zn (Z = 30), the enthalpy of atomisation of zinc is the lowest, i.e., 126 kJ mol–1. Why? (ii) Which of the 3<i>d</i> series of the transition metals exhibits the largest number of oxidation states and why? 	2 d
8. Differentiate Homoleptic and heteroleptic complexes with examples.	2
9. Draw figure to show the splitting of <i>d</i> orbitals in an octahedral crystal field.	2
SECTION C	
 10. Describe the preparation of potassium dichromate from iron chromite ore. What is the effect of increasing pH on a solution of potassium dichromate? 11. Describe the oxidising action of potassium dichromate and write the ionic equations for its reaction with: (i) iodide (ii) iron(II) solution and (iii) H₂S 12. Write the IUPAC names of the following coordination compounds: 	3 3 3
(a) [Pt(NH ₃) ₂ Cl(NO ₂)] (b) K ₃ [Cr(C ₂ O ₄) ₃] (c) [CoCl ₂ (en) ₂]Cl	

13. On the basis of the following observations made with aqueous solutions, assign secondary valences to metals in the following compounds: 3

Formula	Moles of AgCl precipitated per mole of
	the compounds with excess AgNO ₃
(i) PdCl2.4NH3	2
(ii) NiCl2.6H2O	2
(iii) PtCl4.2HCl	0
(iv) CoCl3.4NH3	1
(v) PtCl2.2NH3	0

-----ALL THE BEST-----